org.encog.app.analyst.csv.normalize
Class AnalystNormalizeCSV

java.lang.Object
  extended by org.encog.app.analyst.csv.basic.BasicFile
      extended by org.encog.app.analyst.csv.normalize.AnalystNormalizeCSV
All Implemented Interfaces:
QuantTask

public class AnalystNormalizeCSV
extends BasicFile

Normalize, or denormalize, a CSV file.


Field Summary
 
Fields inherited from class org.encog.app.analyst.csv.basic.BasicFile
REPORT_INTERVAL
 
Constructor Summary
AnalystNormalizeCSV()
           
 
Method Summary
 void analyze(File inputFilename, boolean expectInputHeaders, CSVFormat inputFormat, EncogAnalyst theAnalyst)
          Analyze the file.
static double[] extractFields(EncogAnalyst analyst, CSVHeaders headers, ReadCSV csv, int outputLength, boolean skipOutput)
          Extract fields from a file into a numeric array for machine learning.
 void normalize(File file)
          Normalize the input file.
 void setSourceFile(File file, boolean headers, CSVFormat format)
          Set the source file.
 
Methods inherited from class org.encog.app.analyst.csv.basic.BasicFile
appendSeparator, getColumnCount, getFormat, getInputFilename, getInputHeadings, getPrecision, getRecordCount, getReport, getReportInterval, getScript, isAnalyzed, isExpectInputHeaders, isProduceOutputHeaders, performBasicCounts, prepareOutputFile, readHeaders, reportDone, reportDone, requestStop, resetStatus, setAnalyzed, setColumnCount, setExpectInputHeaders, setInputFilename, setInputFormat, setInputHeadings, setPrecision, setProduceOutputHeaders, setRecordCount, setReport, setReportInterval, setScript, shouldStop, toString, updateStatus, updateStatus, validateAnalyzed, writeRow
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

AnalystNormalizeCSV

public AnalystNormalizeCSV()
Method Detail

extractFields

public static final double[] extractFields(EncogAnalyst analyst,
                                           CSVHeaders headers,
                                           ReadCSV csv,
                                           int outputLength,
                                           boolean skipOutput)
Extract fields from a file into a numeric array for machine learning.

Parameters:
analyst - The analyst to use.
headers - The headers for the input data.
csv - The CSV that holds the input data.
outputLength - The length of the returned array.
skipOutput - True if the output should be skipped.
Returns:
The encoded data.

analyze

public void analyze(File inputFilename,
                    boolean expectInputHeaders,
                    CSVFormat inputFormat,
                    EncogAnalyst theAnalyst)
Analyze the file.

Parameters:
inputFilename - The input file.
expectInputHeaders - True, if input headers are present.
inputFormat - The format.
theAnalyst - The analyst to use.

normalize

public void normalize(File file)
Normalize the input file. Write to the specified file.

Parameters:
file - The file to write to.

setSourceFile

public void setSourceFile(File file,
                          boolean headers,
                          CSVFormat format)
Set the source file. This is useful if you want to use pre-existing stats to normalize something and skip the analyze step.

Parameters:
file - The file to use.
headers - True, if headers are to be expected.
format - The format of the CSV file.


Copyright © 2014. All Rights Reserved.