org.encog.ml.data.auto
Class AutoFloatDataSet

java.lang.Object
  extended by org.encog.ml.data.auto.AutoFloatDataSet
All Implemented Interfaces:
Serializable, Iterable<MLDataPair>, MLDataSet

public class AutoFloatDataSet
extends Object
implements Serializable, MLDataSet

See Also:
Serialized Form

Nested Class Summary
 class AutoFloatDataSet.AutoFloatIterator
           
 
Constructor Summary
AutoFloatDataSet(int theInputCount, int theIdealCount, int theInputWindowSize, int theOutputWindowSize)
           
 
Method Summary
 void add(MLData data1)
          Add a object to the dataset.
 void add(MLData inputData, MLData idealData)
          Add a set of input and ideal data to the dataset.
 void add(MLDataPair inputData)
          Add a an object to the dataset.
 void addColumn(float[] data)
           
 void close()
          Close this datasource and release any resources obtained by it, including any iterators created.
 MLDataPair get(int index)
           
 int getIdealSize()
           
 int getInputSize()
           
 float getNormalizedMax()
           
 float getNormalizedMin()
           
 void getRecord(long index, MLDataPair pair)
          Read an individual record, specified by index, in random order.
 long getRecordCount()
          Determine the total number of records in the set.
 boolean isNormalizationEnabled()
           
 boolean isSupervised()
           
 Iterator<MLDataPair> iterator()
           
 void loadCSV(String filename, boolean headers, CSVFormat format, int[] input, int[] ideal)
           
 MLDataSet openAdditional()
          Opens an additional instance of this dataset.
 void setNormalizationEnabled(boolean normalizationEnabled)
           
 void setNormalizedMax(float normalizedMax)
           
 void setNormalizedMin(float normalizedMin)
           
 int size()
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

AutoFloatDataSet

public AutoFloatDataSet(int theInputCount,
                        int theIdealCount,
                        int theInputWindowSize,
                        int theOutputWindowSize)
Method Detail

iterator

public Iterator<MLDataPair> iterator()
Specified by:
iterator in interface Iterable<MLDataPair>

getIdealSize

public int getIdealSize()
Specified by:
getIdealSize in interface MLDataSet
Returns:
The size of the ideal data.

getInputSize

public int getInputSize()
Specified by:
getInputSize in interface MLDataSet
Returns:
The size of the input data.

isSupervised

public boolean isSupervised()
Specified by:
isSupervised in interface MLDataSet
Returns:
True if this is a supervised training set.

getRecordCount

public long getRecordCount()
Description copied from interface: MLDataSet
Determine the total number of records in the set.

Specified by:
getRecordCount in interface MLDataSet
Returns:
The total number of records in the set.

getRecord

public void getRecord(long index,
                      MLDataPair pair)
Description copied from interface: MLDataSet
Read an individual record, specified by index, in random order.

Specified by:
getRecord in interface MLDataSet
Parameters:
index - The index to read.
pair - The pair that the record will be copied into.

openAdditional

public MLDataSet openAdditional()
Description copied from interface: MLDataSet
Opens an additional instance of this dataset.

Specified by:
openAdditional in interface MLDataSet
Returns:
The new instance.

add

public void add(MLData data1)
Description copied from interface: MLDataSet
Add a object to the dataset. This is used with unsupervised training, as no ideal output is provided. Note: not all implemenations support the add methods.

Specified by:
add in interface MLDataSet
Parameters:
data1 - The data item to be added.

add

public void add(MLData inputData,
                MLData idealData)
Description copied from interface: MLDataSet
Add a set of input and ideal data to the dataset. This is used with supervised training, as ideal output is provided. Note: not all implementations support the add methods.

Specified by:
add in interface MLDataSet
Parameters:
inputData - Input data.
idealData - Ideal data.

add

public void add(MLDataPair inputData)
Description copied from interface: MLDataSet
Add a an object to the dataset. This is used with unsupervised training, as no ideal output is provided. Note: not all implementations support the add methods.

Specified by:
add in interface MLDataSet
Parameters:
inputData - A MLDataPair object that contains both input and ideal data.

close

public void close()
Description copied from interface: MLDataSet
Close this datasource and release any resources obtained by it, including any iterators created.

Specified by:
close in interface MLDataSet

size

public int size()
Specified by:
size in interface MLDataSet

get

public MLDataPair get(int index)
Specified by:
get in interface MLDataSet

addColumn

public void addColumn(float[] data)

loadCSV

public void loadCSV(String filename,
                    boolean headers,
                    CSVFormat format,
                    int[] input,
                    int[] ideal)

getNormalizedMax

public float getNormalizedMax()
Returns:
the normalizedMax

setNormalizedMax

public void setNormalizedMax(float normalizedMax)
Parameters:
normalizedMax - the normalizedMax to set

getNormalizedMin

public float getNormalizedMin()
Returns:
the normalizedMin

setNormalizedMin

public void setNormalizedMin(float normalizedMin)
Parameters:
normalizedMin - the normalizedMin to set

isNormalizationEnabled

public boolean isNormalizationEnabled()
Returns:
the normalizationEnabled

setNormalizationEnabled

public void setNormalizationEnabled(boolean normalizationEnabled)
Parameters:
normalizationEnabled - the normalizationEnabled to set


Copyright © 2014. All Rights Reserved.