|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of MLRegression in org.encog.app.analyst.csv |
---|
Methods in org.encog.app.analyst.csv with parameters of type MLRegression | |
---|---|
void |
AnalystEvaluateRawCSV.process(File outputFile,
MLRegression method)
Process the file. |
Uses of MLRegression in org.encog.ensemble |
---|
Subinterfaces of MLRegression in org.encog.ensemble | |
---|---|
interface |
EnsembleML
|
Classes in org.encog.ensemble that implement MLRegression | |
---|---|
class |
GenericEnsembleML
|
Uses of MLRegression in org.encog.ml |
---|
Subinterfaces of MLRegression in org.encog.ml | |
---|---|
interface |
MLAutoAssocation
Defines a MLMethod that can handle autoassocation. |
Uses of MLRegression in org.encog.ml.fitting.gaussian |
---|
Classes in org.encog.ml.fitting.gaussian that implement MLRegression | |
---|---|
class |
GaussianFitting
|
Uses of MLRegression in org.encog.ml.fitting.linear |
---|
Classes in org.encog.ml.fitting.linear that implement MLRegression | |
---|---|
class |
LinearRegression
|
Uses of MLRegression in org.encog.ml.prg |
---|
Classes in org.encog.ml.prg that implement MLRegression | |
---|---|
class |
EncogProgram
Holds an Encog Programming Language (EPL) program. |
Uses of MLRegression in org.encog.ml.prg.train |
---|
Classes in org.encog.ml.prg.train that implement MLRegression | |
---|---|
class |
PrgPopulation
A population that contains EncogProgram's. |
Uses of MLRegression in org.encog.ml.svm |
---|
Classes in org.encog.ml.svm that implement MLRegression | |
---|---|
class |
SVM
This is a network that is backed by one or more Support Vector Machines (SVM). |
Uses of MLRegression in org.encog.neural.cpn |
---|
Classes in org.encog.neural.cpn that implement MLRegression | |
---|---|
class |
CPN
Counterpropagation Neural Networks (CPN) were developed by Professor Robert Hecht-Nielsen in 1987. |
Uses of MLRegression in org.encog.neural.freeform |
---|
Classes in org.encog.neural.freeform that implement MLRegression | |
---|---|
class |
FreeformNetwork
Implements a freefrom neural network. |
Uses of MLRegression in org.encog.neural.neat |
---|
Classes in org.encog.neural.neat that implement MLRegression | |
---|---|
class |
NEATNetwork
NEAT networks relieve the programmer of the need to define the hidden layer structure of the neural network. |
class |
NEATPopulation
A population for a NEAT or HyperNEAT system. |
Uses of MLRegression in org.encog.neural.networks |
---|
Classes in org.encog.neural.networks that implement MLRegression | |
---|---|
class |
BasicNetwork
This class implements a neural network. |
Uses of MLRegression in org.encog.neural.pnn |
---|
Classes in org.encog.neural.pnn that implement MLRegression | |
---|---|
class |
BasicPNN
This class implements either a: Probabilistic Neural Network (PNN) General Regression Neural Network (GRNN) To use a PNN specify an output mode of classification, to make use of a GRNN specify either an output mode of regression or un-supervised autoassociation. |
Uses of MLRegression in org.encog.neural.rbf |
---|
Classes in org.encog.neural.rbf that implement MLRegression | |
---|---|
class |
RBFNetwork
RBF neural network. |
Uses of MLRegression in org.encog.neural.thermal |
---|
Classes in org.encog.neural.thermal that implement MLRegression | |
---|---|
class |
BoltzmannMachine
Implements a Boltzmann machine. |
class |
HopfieldNetwork
Implements a Hopfield network. |
class |
ThermalNetwork
The thermal network forms the base class for Hopfield and Boltzmann machines. |
Uses of MLRegression in org.encog.util.error |
---|
Methods in org.encog.util.error with parameters of type MLRegression | |
---|---|
static double |
CalculateRegressionError.calculateError(MLRegression method,
MLDataSet data)
|
Uses of MLRegression in org.encog.util.simple |
---|
Methods in org.encog.util.simple with parameters of type MLRegression | |
---|---|
static double |
EncogUtility.calculateRegressionError(MLRegression method,
MLDataSet data)
|
static void |
EncogUtility.evaluate(MLRegression network,
MLDataSet training)
Evaluate the network and display (to the console) the output for every value in the training set. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |