|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.encog.ml.hmm.distributions.DiscreteDistribution
public class DiscreteDistribution
A discrete distribution is a distribution with a finite set of states that it can be in.
Constructor Summary | |
---|---|
DiscreteDistribution(double[][] theProbabilities)
Construct a discrete distribution with the specified probabilities. |
|
DiscreteDistribution(int[] cx)
Construct a discrete distribution. |
Method Summary | |
---|---|
DiscreteDistribution |
clone()
|
void |
fit(MLDataSet co)
Fit this distribution to the specified data. |
void |
fit(MLDataSet co,
double[] weights)
Fit this distribution to the specified data, with weights. |
MLDataPair |
generate()
Generate a random sequence. |
double[][] |
getProbabilities()
|
double |
probability(MLDataPair o)
Determine the probability of the specified data pair. |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public DiscreteDistribution(double[][] theProbabilities)
theProbabilities
- The probabilities.public DiscreteDistribution(int[] cx)
cx
- The count of each.Method Detail |
---|
public DiscreteDistribution clone()
clone
in interface StateDistribution
clone
in class Object
public void fit(MLDataSet co)
fit
in interface StateDistribution
co
- THe data to fit to.public void fit(MLDataSet co, double[] weights)
fit
in interface StateDistribution
co
- The data to fit to.weights
- The weights.public MLDataPair generate()
generate
in interface StateDistribution
public double probability(MLDataPair o)
probability
in interface StateDistribution
o
- THe data pair.
public double[][] getProbabilities()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |