|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.encog.ml.train.strategy.end.EarlyStoppingStrategy
public class EarlyStoppingStrategy
Stop early when validation set no longer improves. Based on the following paper: techreport{Prechelt94c, author = {Lutz Prechelt}, title = {{PROBEN1} --- {A} Set of Benchmarks and Benchmarking Rules for Neural Network Training Algorithms}, institution = {Fakult\"at f\"ur Informatik, Universit\"at Karlsruhe}, year = {1994}, number = {21/94}, address = {D-76128 Karlsruhe, Germany}, month = sep, note = {Anonymous FTP: /pub/pa\-pers/tech\-reports/1994/1994-21.ps.Z on ftp.ira.uka.de}, }
Constructor Summary | |
---|---|
EarlyStoppingStrategy(MLDataSet theValidationSet,
MLDataSet theTestSet)
Construct the early stopping strategy. |
|
EarlyStoppingStrategy(MLDataSet theValidationSet,
MLDataSet theTestSet,
int theStripLength,
double theAlpha,
double theMinEfficiency)
Construct the early stopping strategy. |
Method Summary | |
---|---|
double |
geteOpt()
|
double |
getGl()
|
double |
getMinEfficiency()
|
double |
getStripEfficiency()
|
int |
getStripLength()
|
double |
getStripOpt()
|
double |
getTestError()
|
double |
getTrainingError()
|
double |
getValidationError()
|
void |
init(MLTrain theTrain)
Initialize this strategy. |
void |
postIteration()
Called just after a training iteration. |
void |
preIteration()
Called just before a training iteration. |
boolean |
shouldStop()
|
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public EarlyStoppingStrategy(MLDataSet theValidationSet, MLDataSet theTestSet)
theValidationSet
- The validation set.theTestSet
- The test set.public EarlyStoppingStrategy(MLDataSet theValidationSet, MLDataSet theTestSet, int theStripLength, double theAlpha, double theMinEfficiency)
theValidationSet
- theTestSet
- theStripLength
- The number of training set elements to validate.theAlpha
- Stop once GL is below this value.theMinEfficiency
- The minimum training efficiency to stop.Method Detail |
---|
public void init(MLTrain theTrain)
init
in interface Strategy
theTrain
- The training algorithm.public void preIteration()
preIteration
in interface Strategy
public void postIteration()
postIteration
in interface Strategy
public boolean shouldStop()
shouldStop
in interface EndTrainingStrategy
public double getTrainingError()
public double getTestError()
public double getValidationError()
public double geteOpt()
public double getGl()
public int getStripLength()
public double getStripOpt()
public double getStripEfficiency()
public double getMinEfficiency()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |