
Neo

.NET Entity Objects
http://neo.sourceforge.net

Design Goals

1Neo Vision and Design Goals

• Business entities are represented by objects

• One Entity Object class per database table

• One Entity Object per database row

• Transparent access to derived properties

• Transparent access to related entities

• Strongly typed API

• Automatic generation of database schema and
class templates from a single XML file

• Separation of generated and custom code

• Full integration with System.Data framework

2Neo Design: Properties

Entity object has properties for db columns.

public class Author {

public string FirstName {
get { … }
set { … }

}

Usage:

Console.WriteLine(anAuthor.FirstName);
anAuthor.FirstName = "Haruki";

3Neo Design: Derived Properties

Custom code adds new (derived) properties.

public class Author {

public string FullName {
get { return FirstName + " " + LastName; }
set { … }

}

Usage: (indistinguishable from db properties)

Console.WriteLine(anAuthor.FullName);
anAuthor.FullName = "Haruki Murakami";

4Neo Design: To-One Relations

Entity object has properties for related objects.

public class Title {

public Publisher Publisher {
get { … }
set { … }

}

Usage: (simple object assignments)

thePublisher = aTitle.Publisher;
Console.WriteLine(thePublisher.Name);
aTitle.Publisher = anotherPublisher;

5Neo Design: To-Many Relations

Object has (typed) collection for related objects.

public class Publisher {
public TitleRelation Titles { get { … }; }

public class TitleRelation : IList {
public Title this[int index] { … }
public void Add(Title aTitle) { … }
public int Count { … }

Usage: (identical to .NET collection pattern)

if(thePublisher.Titles.Count > 0)
aTitle = thePublisher.Titles[0];

thePublisher.Titles.Add(anotherTitle);

Objects are loaded on first access: Lazy-Loading

6Neo Design: CRUD, the rest

Factories create and find objects. Objects delete
themselves
public class AuthorFactory {
public Author CreateObject()
public AuthorList FindAllObjects()
public AuthorList FindMatchingObjects(…)
public AuthorList Find(…)

public class Author {
public Delete()

Usage:

myFactory = new AuthorFactory();
newAuthor = myFactory.Create();
resultSet = myFactory.FindAllObjects();

7Neo Design: Primary Keys

Primary keys can be generated; either auto-
incremented integers or globally unique ids.

Neo also supports "meaningful" primary keys
and generates different Create methods

title = titleFactory.CreateObject("TC7777");

Neo understands correlation tables and
generates special Create methods
ta = taFactory.CreateObject(title, author);

Different primary key generation strategies can
be implemented outside the framework.

8Neo Design: Query Templates

Factories can create a query template that has
the same properties as the corresponding entity
object, including to-one relationships.

template = authorFactory.GetQueryTemplate();
template.FirstName = "Haruki"

template = titleFactory.GetQueryTemplate();
template.Publisher = aPublisher;

Factories can find all objects matching the
template

titles = factory.FindMatchingObjects(template);

9Neo Design: Qualifiers

Qualifiers define criteria for selections. They are
normally constructed using formats.

q = Qualifier.Format("name = {0}", input);

Formats can use inlined values and comprise
multiple clauses:

q = Qualifier.Format("name = 'Haruki');
q = … ("name = {0} and locked = false", input);

Formats provide a shortcut for simple matches:

q = new Qualifier.Format("Name", input);

10Neo Design: Qualifiers

Qualifiers can evaluate whether an object
matches their criteria:

if(q.EvaluateWithObject(anAuthor))
doSomething(anAuthor);

Factories use qualifiers:

AuthorFactory f = new AuthorFactory();
AuthorList list = f.Find("Name = {0}", input);

So do collections and relations:

sublist = list.Find("Advance < 5000");
sublist = publisher.Titles.Find(…);

11Neo Design: Delete modes

SetNull deletes behave as expected

aTitle = thePublisher.Titles[0];
thePublisher.Delete()
if(aTitle.Publisher == null)
Console.WriteLine("It just works!");

Cascading deletes are supported and the last
line in the following example will cause an
exception to be thrown

aTitle = theAuthor.Titles[0];
theAuthor.Delete()
Console.WriteLine(aTitle.PublicationDate);

12Neo Design: Code Separation

All methods presented are implemented in an
intermediary class, AuthorBase for example. This
should not be modified.

public class AuthorBase : EntityObject {
public string FirstName { … }
public string LastName { … }

Initially, a subclass is generated but the
developer is expected to modify it and it is not
re-generated when the schema changes.

public class Author : AuthorBase {
public string FullName { … }

13Neo Design Goals (review)

• Business entities are represented by objects

• One Entity Object class per database table

• One Entity Object per database row

• Transparent access to derived properties

• Transparent access to related entities

• Strongly typed API

• Automatic generation of database schema and
class templates from a single XML file

• Separation of generated and custom code

• Full integration with System.Data framework

