.NET Entity Objects

http://neo.sourceforge.net

Design Goals

m Vision and Design Goals

Business entities are represented by objects
One Entity Object class per database table
One Entity Object per database row
Transparent access to derived properties
Transparent access to related entities
Strongly typed API

Automatic generation of database schema and
class templates from a single XML file

Separation of generated and custom code

Full integration with System.Data framework

m Design: Properties

Entity object has properties for db columns.

public class Author {

public string FirstName {

get { .. }
set { .. }

}
Usage:

Console.Writel.ine (anAuthor.FirstName) ;

anAuthor.FirstName = "Haruki";

m Design: Derived Properties

Custom code adds new (derived) properties.

public class Author {

public string FullName ({
get { return FirstName + " " + LastName; }
set { .. }

}
Usage: (indistinguishable from db properties)

Console.Writel.ine (anAuthor.FullName) ;

anAuthor.FullName = "Haruki Murakami'";

m Design: To-One Relations

Entity object has properties for related objects.
public class Title {

public Publisher Publisher {

get { .. }
set { .. }

}
Usage: (simple object assignments)

thePublisher = aTitle.Publisher;
Console.WritelLine (thePublisher.Name) ;

aTitle.Publisher = anotherPublisher;

m Design: To-Many Relations

Object has (typed) collection for related objects.

public class Publisher {
public TitleRelation Titles { get { .. }; }

public class TitleRelation : IList {
public Title this[int index] { .. }
public void Add(Title aTitle) { .. }
public int Count { .. }

Usage: (identical to .NET collection pattern)

if (thePublisher.Titles.Count > 0)
aTitle = thePublisher.Titles|[0];
thePublisher.Titles.Add (anotherTitle) ;

Objects are loaded on first access: Lazy-Loading

m Design: CRUD, the rest

Factories create and find objects. Objects delete
themselves

public class AuthorFactory ({
public Author CreateObject ()
public AuthorList FindAllObjects ()
public Authorlist FindMatchingObjects(..)
public AuthorList Find(..)

public class Author ({
public Delete()

Usage:

myFactory = new AuthorFactory() ;
newAuthor = myFactory.Create() ;
resultSet = myFactory.FindAllObjects() ;

m Design: Primary Keys

Primary keys can be generated; either auto-
incremented integers or globally unique ids.

Neo also supports "meaningful” primary keys
and generates different Create methods

title = titleFactory.CreateObject ("TC7777") ;

Neo understands correlation tables and
generates special Create methods
ta = taFactory.CreateObject(title, author);

Different primary key generation strategies can
be implemented outside the framework.

m Design: Query Templates

Factories can create a query template that has
the same properties as the corresponding entity
object, including to-one relationships.

template = authorFactory.GetQueryTemplate() ;
template.FirstName = "Haruki"

template = titleFactory.GetQueryTemplate() ;
template.Publisher = aPublisher;

Factories can find all objects matching the
template

titles = factory.FindMatchingObjects (template) ;

m Design: Qualifiers

Qualifiers define criteria for selections. They are
normally constructed using formats.

q = Qualifier.Format('"'name = {0}", input);

Formats can use inlined values and comprise
multiple clauses:

q = Qualifier.Format("name = 'Haruki');

q = .. ("name = {0} and locked = false", input)

Formats provide a shortcut for simple matches:

q = new Qualifier.Format("Name", input);

m Design: Qualifiers

10

Qualifiers can evaluate whether an object
matches their criteria:

if (g.EvaluateWithObject (anAuthor))
doSomething (anAuthor) ;

Factories use qualifiers:

AuthorFactory £ = new AuthorFactory()

AuthorList list = f£f.Find("Name = {0}", input);

So do collections and relations:

sublist = list.Find("Advance < 5000") ;
sublist = publisher.Titles.Find(..);

m Design: Delete modes

11

SetNull deletes behave as expected

aTitle = thePublisher.Titles|[0];

thePublisher .Delete ()

if (aTitle.Publisher == null)
Console.WriteLine ("It just works!");

Cascading deletes are supported and the last
line in the following example will cause an
exception to be thrown

aTitle = theAuthor.Titles|[0];
theAuthor.Delete ()
Console.Writeline (aTitle.PublicationDate) ;

m Design: Code Separation

12

All methods presented are implemented in an
intermediary class, AuthorBase for example. This
should not be modified.

public class AuthorBase : EntityObject ({
public string FirstName { .. }
public string LastName { .. }

Initially, a subclass is generated but the
developer is expected to modify it and it is not
re-generated when the schema changes.

public class Author : AuthorBase {
public string FullName { .. }

m Design Goals (review)

ve
ve
Ve

v
ve
ve

ve

13

Business entities are represented by objects
One Entity Object class per database table
One Entity Object per database row
Transparent access to derived properties
Transparent access to related entities
Strongly typed API

Automatic generation of database schema and
class templates from a single XML file

Separation of generated and custom code

Full integration with System.Data framework

