Modifier and Type | Method and Description |
---|---|
void |
AnalystEvaluateRawCSV.process(File outputFile,
MLRegression method)
Process the file.
|
Modifier and Type | Interface and Description |
---|---|
interface |
EnsembleML |
Modifier and Type | Class and Description |
---|---|
class |
GenericEnsembleML |
Modifier and Type | Interface and Description |
---|---|
interface |
MLAutoAssocation
Defines a MLMethod that can handle autoassocation.
|
Modifier and Type | Class and Description |
---|---|
class |
GaussianFitting |
Modifier and Type | Class and Description |
---|---|
class |
LinearRegression |
Modifier and Type | Class and Description |
---|---|
class |
EncogProgram
Holds an Encog Programming Language (EPL) program.
|
Modifier and Type | Class and Description |
---|---|
class |
PrgPopulation
A population that contains EncogProgram's.
|
Modifier and Type | Class and Description |
---|---|
class |
SVM
This is a network that is backed by one or more Support Vector Machines
(SVM).
|
Modifier and Type | Class and Description |
---|---|
class |
CPN
Counterpropagation Neural Networks (CPN) were developed by Professor
Robert Hecht-Nielsen in 1987.
|
Modifier and Type | Class and Description |
---|---|
class |
FreeformNetwork
Implements a freefrom neural network.
|
Modifier and Type | Class and Description |
---|---|
class |
NEATNetwork
NEAT networks relieve the programmer of the need to define the hidden layer
structure of the neural network.
|
class |
NEATPopulation
A population for a NEAT or HyperNEAT system.
|
Modifier and Type | Class and Description |
---|---|
class |
BasicNetwork
This class implements a neural network.
|
Modifier and Type | Class and Description |
---|---|
class |
BasicPNN
This class implements either a:
Probabilistic Neural Network (PNN)
General Regression Neural Network (GRNN)
To use a PNN specify an output mode of classification, to make use of a GRNN
specify either an output mode of regression or un-supervised autoassociation.
|
Modifier and Type | Class and Description |
---|---|
class |
RBFNetwork
RBF neural network.
|
Modifier and Type | Class and Description |
---|---|
class |
BoltzmannMachine
Implements a Boltzmann machine.
|
class |
HopfieldNetwork
Implements a Hopfield network.
|
class |
ThermalNetwork
The thermal network forms the base class for Hopfield and Boltzmann machines.
|
Modifier and Type | Method and Description |
---|---|
static double |
CalculateRegressionError.calculateError(MLRegression method,
MLDataSet data) |
Modifier and Type | Method and Description |
---|---|
static double |
EncogUtility.calculateRegressionError(MLRegression method,
MLDataSet data) |
static void |
EncogUtility.evaluate(MLRegression network,
MLDataSet training)
Evaluate the network and display (to the console) the output for every
value in the training set.
|
static void |
EncogUtility.explainErrorMSE(MLRegression method,
MatrixMLDataSet training) |
static void |
EncogUtility.explainErrorRMS(MLRegression method,
MatrixMLDataSet training) |
Copyright © 2014. All Rights Reserved.