org.encog.mathutil.matrices.decomposition
public class SingularValueDecomposition extends Object
For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.
The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].
The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition. This file based on a class from the public domain JAMA package. http://math.nist.gov/javanumerics/jama/
Constructor and Description |
---|
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition
Structure to access U, S and V.
|
Modifier and Type | Method and Description |
---|---|
double |
cond()
Two norm condition number
|
Matrix |
getS()
Return the diagonal matrix of singular values
|
double[] |
getSingularValues()
Return the one-dimensional array of singular values
|
Matrix |
getU()
Return the left singular vectors
|
Matrix |
getV()
Return the right singular vectors
|
double |
norm2()
Two norm
|
int |
rank()
Effective numerical matrix rank
|
public SingularValueDecomposition(Matrix Arg)
Arg
- Rectangular matrixpublic Matrix getU()
public Matrix getV()
public double[] getSingularValues()
public Matrix getS()
public double norm2()
public double cond()
public int rank()
Copyright © 2014. All Rights Reserved.