Modifier and Type | Class and Description |
---|---|
class |
BasicNetwork
This class implements a neural network.
|
Modifier and Type | Field and Description |
---|---|
protected ContainsFlat |
Propagation.network
The network to train.
|
Constructor and Description |
---|
Propagation(ContainsFlat network,
MLDataSet training)
Construct a propagation object.
|
Constructor and Description |
---|
Backpropagation(ContainsFlat network,
MLDataSet training)
Create a class to train using backpropagation.
|
Backpropagation(ContainsFlat network,
MLDataSet training,
double theLearnRate,
double theMomentum) |
Constructor and Description |
---|
ManhattanPropagation(ContainsFlat network,
MLDataSet training,
double theLearnRate)
Construct a Manhattan propagation training object.
|
Constructor and Description |
---|
QuickPropagation(ContainsFlat network,
MLDataSet training)
Construct a QPROP trainer for flat networks.
|
QuickPropagation(ContainsFlat network,
MLDataSet training,
double theLearningRate)
Construct a QPROP trainer for flat networks.
|
Constructor and Description |
---|
ResilientPropagation(ContainsFlat network,
MLDataSet training)
Construct an RPROP trainer, allows an OpenCL device to be specified.
|
ResilientPropagation(ContainsFlat network,
MLDataSet training,
double initialUpdate,
double maxStep)
Construct a resilient training object, allow the training parameters to
be specified.
|
Constructor and Description |
---|
ScaledConjugateGradient(ContainsFlat network,
MLDataSet training)
Construct a training class.
|
Modifier and Type | Class and Description |
---|---|
class |
RBFNetwork
RBF neural network.
|
Modifier and Type | Method and Description |
---|---|
static void |
EncogValidate.validateNetworkForTraining(ContainsFlat network,
MLDataSet training)
Validate a network for training.
|
Copyright © 2014. All Rights Reserved.