
 OIDC sso agent for .NET Framework

Table of Contents

1. Introduction - Basic intro to agent
2. How to incorporate to your asp.net web application
3. Running samples - OIDC SSO / SLO with two samples
4. Architectural Diagram of the OIDC SSO Agent
5. OIDC Agent supports Single Logout
6. How to enable SLO
7. TIPS - ​Important in all scenarios

★ Introduction

Suppose you have an ASP.NET web application or else you are going to create a new one. One
of your major concerns would be to provide a secure mechanism of handling user authentication
and authorization. With the introduction of this OIDC SSO Agent, you will never have to worry
about that at all. Moreover, you can just incorporate this agent to your ASP.NET web application
and it will take care of all the things related to OIDC authentication mechanism.

★ How to incorporate to your asp.net web application?

If you plan to use OIDC SSO Agent, all you have to do is following simple steps below and then
you have a web application that authenticates users with your favourite Identity Provider (Wso2
Identity Server).

Let’s get started. The process of incorporating SAML authentication with wso2 identity server
via SAML agent can be explained in 6 steps.

1. Add the agent.dll reference to your Asp.NET web application(You can get this the git
repo)

2. Configure - the mandatory properties in your ASP.NET web application’s web.config file.

Following image shows how does it looks like after adding those properties to your
web.config file.

Property Description Default Value

EnableOIDCSSOLogin Enable OIDC authentication false

OIDCSSOURL SSO URL oidcsso

OIDC.spName Service Provider Identifier null

OIDC.ClientId Client key which was
generated during OIDC
configuration for Service
Provider

null

OIDC.ClientSecret Client Secret which was
generated during OIDC
configuration for Service
Provider

null

OIDC.CallBackUrl Callback URL null

OIDC.GrantType Grant Type code

OIDC.AuthorizeEndpoint Authorization Endpoint of
the IDP which is used to get
an authorization code.

https://localhost:9443/oauth2/
authorize

OIDC.TokenEndpoint Token endpoint of the IDP
used to receive an access
token

https://localhost:9443/oauth2/
token

OIDC.UserInfoEndpoint User info endpoint of the
IDP which is used to fetch
user details

https://localhost:9443/oauth2/
userinfo?schema=openid

OIDC.Scope Scope of the request as per
the OIDC spec

openid

OIDC.EnableSLO Enable single logout

OIDC.SLOURL Single logout URL oidclogout

OIDC.EnableIDTokenValidatio
n

Enable ID token validation false

OIDC.PostLogoutRedirectUri Post logout redirect URL null

OIDC.SessionIFrameEndpoint OP Session IFrame
Endpoint

null

Below is a sample to demonstrate this step. You can edit the values as per needed:

<​appSettings​>
 <​add​ ​key​=​"​EnableOIDCSSOLogin​"​ ​value​=​"​true​"​ />
 <​add​ ​key​=​"​OIDCSSOURL​"​ ​value​=​"​oidcsso​"​ />
 <​add​ ​key​=​"​OIDC.spName​"​ ​value​=​"​music-store​"​ />
 <​add​ ​key​=​"​OIDC.ClientId​"​ ​value​=​"​6G4s9GSYLd2USGB9f_Bf7kI6RHka​"​ />
 <​add​ ​key​=​"​OIDC.ClientSecret​"​ ​value​=​"​_gWqRvvxrcxg_rZgraGX4d0fnS4a​"​ />
 <​add​ ​key​=​"​OIDC.CallBackUrl​"​ ​value​=​"​http://localhost:58521/music-store/callback​"​ />
 <​add​ ​key​=​"​OIDC.GrantType​"​ ​value​=​"​code​"​ />
 <​add​ ​key​=​"​OIDC.AuthorizeEndpoint​"​ ​value​=​"​https://localhost:9443/oauth2/authorize​"​ />
 <​add​ ​key​=​"​OIDC.TokenEndpoint​"​ ​value​=​"​https://localhost:9443/oauth2/token​"​ />
 <​add​ ​key​=​"​OIDC.UserInfoEndpoint​"
 value​=​"​https://localhost:9443/oauth2/userinfo?schema=openid​"​ />
 <​add​ ​key​=​"​OIDC.Scope​"​ ​value​=​"​openid​"​ />
 <​add​ ​key​=​"​OIDC.IdPEntityId​"​ ​value​=​"​localhost​"​ />
 <​add​ ​key​=​"​OIDC.IdPURL​"​ ​value​=​"​https://localhost:9443/​"​ />
 <​add​ ​key​=​"​OIDC.EnableSLO​"​ ​value​=​"​true​"​ />
 <​add​ ​key​=​"​OIDC.SLOURL​"​ ​value​=​"​oidclogout​"​ />
 <​add​ ​key​=​"​OIDC.EnableIDTokenValidation​"​ ​value​=​"​true​"​ />
 <​add​ ​key​=​"​OIDC.PostLogoutRedirectUri​"
 value​=​"​http://localhost:58521/music-store/Default​"​ />
 <​add​ ​key​=​"​OIDC.SessionIFrameEndpoint​"
 ​value​=​"​https://localhost:9443/oidc/checksession​"​ />
 </​appSettings​>

3. Next, if you want to validate ID token signature, you need to have a valid certificate.
[​Note: It is highly recommended to use your own PKCS12 in your production
environment​].
For testing purposes you can get the ​wso2carbon.jks from the wso2 Identity server
(​<IS_HOME> / repository/ resources/ security/ wso2carbon.jks​) and convert it to a
PKCS12 using keytool utility. Then, add the .p12 to the Local Machine certificate Store.
However, below steps guide you through the process which was described above.

● You get keytool by default with java installation and it could be found under the
directory: C:\Program Files\Java\jre<Version>\bin , with the name keytool.exe .

● You can use the below command to convert the wso2carbon.jks to
wso2carbon.p12
keytool -importkeystore -srckeystore wso2carbon.jks -destkeystore
wso2carbon.p12 -srcstoretype JKS -deststoretype PKCS12 -deststorepass
[PASSWORD_PKCS12]

● Then, run microsoft management console(i.e: mmc.exe) as administrator, menu
File -> ​Add/Remove Snap-in..​, select "Certificates", press Add, select radio
button "Computer account", and then you can install wso2carbon.p12

4. Register the “​FilteringHttpModule​” in your ASP.NET web application to handle the

requests related to OIDC authentication mechanism.[​Note: The above mentioned
FilteringHttpModule class is extended from IHttpModule. Click ​here for more
information on IHttpModules.​]

5. Add the following code to the ​global.asax of your ASP.NET web application to enable

session access from the agent.

 public​ ​override​ ​void​ Init()
 {
 MapRequestHandler += EnableSession;
 ​base​.Init();
 }

 ​void​ EnableSession(​object​ sender, ​EventArgs​ e)
 {
 ​HttpContext​.Current.SetSessionStateBehavior(​SessionStateBehavior​.Required);
 }

6. Set your application’s login controls to refer oidc intensive segments. That is suppose

you have a login link in your web application. All you have to do is set the attribute href
to “oidcsso”. And in the places that you have logout controls, it should be “oidclogout”.

[Note: “oidcsso” and “oidclogout” are values that were configured under Step No: 2 for
the properties ​OIDCSSOURL and ​OIDC.SLOURL respectively. However, “oidcsso” and
“oidclogout” are the default values for those two properties.]

https://msdn.microsoft.com/library/ms178468.aspx

Upon successful completion of the 6 steps above, you ASP.NET web application is enabled with
OIDC authentication.
★ Running samples

The given solution contains agent source code and two samples to demonstrate agent.

These two samples can be used to demonstrate SAML Authentication as well as SSO and SLO.
Sample 1 is analogous to a app that provides trip guidance. Sample 2 is a simple music store.
First, you have to create two service providers in the IDP(wso2 Identity server) and configure
OIDC authentication for both of them.

1. First create a Service provider in WSO2 Identity Server for Trip Guider app.

2. Then navigate to Inbound Authentication Configuration -> OAuth / OpenID Connect
Configuration.

3. You can do above configurations and click the update button.

4. Then navigate to Claim Configuration and add the claims you want under requested
Claims. Here I have added email address. You can have any claim configuration you
prefer.

Then do the above Step 1, 2, 3 again to create an SP for ​Music Store app. Service Provider
Name in step 1 should be ​music-store. ​Assertion Consumer URL in Step 2 should be
http://localhost:60662/music-store/acs​.​Rest of the thing can be done in the same manner as
it was done for Trip Guider app. Then you might have to update attribute consuming service
index properties in web config files of the samples.

5. Now you can press F5 in visual studio and try the app. Sample screenshots taken during the
trying out of samples are show below

I. After pressing F5 Trip Guder and Music Store gets started in you default browser as
shown below.

II. Then, press the login button in trip guider.
III. You get logged in successfully and you can see the claims you have received. (You

receive claims which were configured using claim configuration while configuring the
Service Provider only.)

IV. Press the login button in Music Store app and you should seamlessly get logged in
without any prompt for login.(Occurrence of Single Sign on.)

V. Now you can try to logout of any of these two. I will try logging out from Music Store app.
VI. Then you can see that you have automatically logged out from trip Guider app

too.(Occurrence of Single Logout)

http://localhost:60662/music-store/acs

★ Architectural Diagram of the OIDC SSO Agent

2, 3, 7, 8 are related to resolving of the current request.

★ OIDC Agent supports Single Logout

This agent uses the polling mechanism to achieve Single logout functionality. To elaborate more
on this feature, there is a hidden RP(relying Party) iframe which keeps polling the OP(OpenId
Provider) iframe periodically with a given time interval. As per the description found in ​OpenID
Connect Specification​, this mechanism can check the login status by polling at OP minimizing
the network traffic. At each time when the OP is polled, it will return a value (could be either
changed, unchanged or error). As supposed by the spec, when the return value is equals to
“​changed​”, a passive request should be sent to OP and if the response is a login error it should
be handled as SLO.

http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html

★ How to enable Single Logout ?

It is really simple to enable Single Logout for your asp.net web application. All you have to do is
following simple steps below.

1. Add the ​RpIFrame.asax​ to your project. You can get it from ​here
2. Add the following line to the asp.net pages where you want to get logged out if SLO has

occurred. For example, suppose you have a page that displays secure content and you
want to redirect that page to Default.aspx once logout occur. Then, simply add the
following line to your desired .aspx page.

3. Then, in the code behind file of the .aspx file for which you have done the step 1, add the
following code block there. This will wire up the src for the IFRAME.

4. Add “​PostLogoutRedirectUri​” property to the Web.config file of your ASP.NET web
application with your desired location if you have not added that yet. Next, Add
“​EnableSLO​” property and the value should be “​true​”.

 ​Tips -​ Important in all scenarios

1. If your asp.net web app uses Newtonsoft.Json as a reference, Please make sure that
you have updated Newtonsoft.Json the reference to latest version.Otherwise it will cause
errors during runtime.
(Note: by default you get this Newtonsoft.Json as a reference in your asp.net
webapp when you create your project.)

